Введение в глубокое обучение
-
34.37 €
-+
Автор книги - давний исследователь искусственного интеллекта, специализирующийся на обработке естественного языка, революцию в котором сделало глубокое обучение. К сожалению, ему потребовалось много времени, чтобы это понять. Можно сказать, что нейронные сети угрожают революцией уже третий раз, а отнюдь не первый. Тем не менее автор внезапно оказался далеко позади и изо всех сил пытался наверстать упущенное. Именно поэтому он сделал то, что сделал бы на его месте любой уважающий себя профессор: запланировал преподавание курса и начал ускоренно изучать материал, просматривая веб-страницы.
Этим объясняется несколько выдающихся особенностей этой книги. Во-первых, краткость. Во-вторых, она сильно зависит от проекта. Автор считает, что материал по информатике лучше изучать при написании программ, поэтому книга во многом отражает его привычки в преподавании.
Эта книга, в первую очередь, задумана как учебник для курса по глубокому обучению. Курс, который автор преподает в Брауне, предназначен как для выпускников, так и для остальных студентов, и охватывает весь материал. Хотя фактическое количество материала по линейной алгебре не так уж велико, студенты сказали, что без него им было бы довольно сложно разобраться в многослойных сетях и необходимых им тензорах. И наконец, есть предпосылка для вероятности и статистики. Автор также предполагает элементарные знания читателей в программировании на языке Python. Хотя этот материал не включен в книгу, но у автора есть дополнительная "лаборатория" по основам языка Python.
Этим объясняется несколько выдающихся особенностей этой книги. Во-первых, краткость. Во-вторых, она сильно зависит от проекта. Автор считает, что материал по информатике лучше изучать при написании программ, поэтому книга во многом отражает его привычки в преподавании.
Эта книга, в первую очередь, задумана как учебник для курса по глубокому обучению. Курс, который автор преподает в Брауне, предназначен как для выпускников, так и для остальных студентов, и охватывает весь материал. Хотя фактическое количество материала по линейной алгебре не так уж велико, студенты сказали, что без него им было бы довольно сложно разобраться в многослойных сетях и необходимых им тензорах. И наконец, есть предпосылка для вероятности и статистики. Автор также предполагает элементарные знания читателей в программировании на языке Python. Хотя этот материал не включен в книгу, но у автора есть дополнительная "лаборатория" по основам языка Python.